
Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 16|P a g e

Android NDK Graphics: Open GL ES Air Hockey Basis

Application

Sabyasachi Patra *, Prathamesh Patel**, KarishmaVelisetty***, Mr. Abhay

Kolhe****
*,**,***(Department of Computer Science, Mukesh Patel School of Technology Management and Engineering,

NMIMS University, Mumbai, India.)

***(Faculty, Department of Computer Science, Mukesh Patel School of Technology Management and

Engineering, NMIMS University, Mumbai, India.)

ABSTRACT

When it comes to beautiful visual rendering and games on the Android handsets that we use today, much of that

credit has to be given to the various graphic libraries which come along with programming paradigms. Just like

anything in programming and technology, there are good and bad ways to implement and get certain things done

both at the front end and the backend. What the Android Native Development Kit (NDK) does is that it works

alongside the Software Development Kit (SDK) and injects the native powers of any C/C++ application into

your Android application which can be packaged as any normal application and run on an emulator/device of

choice. The SDK, the NDK, the ADT and Eclipse are primarily what one requires to directly hit on towards

Android Native Development. So now how does one enjoy the seamless graphics, multimedia, physics and

games on an Android device? It is the Native API’s which come as a result of relying on performance critical

native code which makes this possible. In this paper we develop a basis game of Air Hockey, which is more of a

concept game made using the technological paradigm of the NDK in Android Programming. Right from

defining the structure of the table up to defining and implementing the shaders and 3D rendering, almost every

important aspect has been researched and put into working through this paper.

Keywords–Air Hockey, Android, Java, OpenGL, Drawing, Shaders, Graphics API, Android 3D Rendering

I. INTRODUCTION
To play a game of air hockey, we need a

long rectangular table with two goals (one on each

end), a puck, and two mallets to strike the puck with.

Each round starts with the puck placed in the middle

of the table. Each player then tries to strike the puck

into the opponent’s goal while preventing the

opponent from doing the same. The first player to

reach seven goals wins the game.

II. DEFINING THE STRUCTURE OF OUR

AIR HOCKEY TABLE
Before drawing the table to the screen,

OpenGL needs to know what to draw. The drawing

of the structure of the table needs to be done in a

form that OpenGL understands. The vertex is the

inception of everything in OpenGL. Drawing of any

structure starts by defining the vertex for that

particular structure.

III. INTRODUCING VERTICES
A vertex is simply a point representing one

corner of a geometric object, with various attributes

associated with that point. The most important

attribute is the position, which represents where this

vertex is located in space.

IV. BUILDING THE TABLE WITH

VERTICES
When choosing a basic shape it should be

kept in mind that the structure should match the

objective of the game. So the most suitable shape to

represent an air hockey table can be taken as a

rectangle. Since a rectangle has four corners, the

structure has four vertices.

The rectangle depicted here is taken in the form of a

two-dimensional object, so each vertex would need a

position, with a coordinate for each dimension i.e. x

and y.

RESEARCH ARTICLE OPEN ACCESS

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 17|P a g e

Fig.1: Defining Vertices in Code

publicAirHockeyRenderer() {

float[] tableVertices = {

0f, 0f,

0f, 14f,

9f, 14f,

9f, 0f

};

}

Points and lines are for certain effects, but only

triangles are used to construct an entire scene of

complex objects and textures. Triangles in OpenGL

are builtby grouping individual vertices together, and

then OpenGL can be instructed how to connect the

dots.

Fig.2: Defining the structure of our air hockey table

Fig.3: Adding the center line and two mallets

V. MAKING THE DATA ACCESSIBLE

TO OPENGL
The OpenGL now needs to access the

vertices that are created. There are two main concepts

involved here:

5.1 Dalvik VM

When we compile and run our Java code in the

emulator or on a device, it runs through the

Dalvik virtual machine. Code running in

thisvirtual machine has no direct access to the

native environment other than via special APIs.

5.2 Garbage Collector

The DalvikVM also uses garbage collection.

When the VM detects that a variable, object, or a

memory address is no longer being used, it will

release that memory so that it can be reused.

VI. MAPPING COLORS TO THE

DISPLAY:
OpenGL uses the generic additive RGB

color model, which works with just the three primary

colors - Red, Green, and Blue. Many colors can be

created by mixing these primary colors together in

various proportions.

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 18|P a g e

Fig.4: RGB color model

OpenGL assumes that these colors all have a linear

relationship with eachother: a red value of 0.5 should

be twice as bright as a red value of 0.25, anda red

value of 1 should be twice as bright as a red value of

0.5. These primarycolors are clamped to the range [0,

1], with 0 representing the absence of thatparticular

primary color and 1 representing the maximum

strength for thatcolor.

The important steps that need to be followed are

given below:

- Loading Shaders

- Loading Text from a Resource

- Reading in the Shader Code

- Compiling Shaders

public static String

readTextFileFromResource(Context context,

intresourceId) {

StringBuilderbody = new StringBuilder();

try{

InputStreaminputStream =

context.getResources().openRawResource(resourceId

);

InputStreamReaderinputStreamReader =

report erratum • discuss

newInputStreamReader(inputStream);

BufferedReaderbufferedReader = new

BufferedReader(inputStreamReader);

String nextLine;

while((nextLine = bufferedReader.readLine()) !=

null) {

body.append(nextLine);

body.append('\n');

}

} catch (IOException e) {

throw new RuntimeException(

"Could not open resource: "+ resourceId, e);

} catch (Resources.NotFoundExceptionnfe) {

throw new RuntimeException("Resource not found: "

+ resourceId, nfe);

}

returnbody.toString();

}

Further a new helper class is createdthat creates a

new OpenGL shader object, compile theshader code,

and return the shader.

finalint[] compileStatus = new int[1];

glGetShaderiv(shaderObjectId,

GL_COMPILE_STATUS, compileStatus, 0);

Two things are achieved by the above code.

Uploading and Compiling the Shader Source Code

and retrieving the Compilation Status

Compiling the Shaders from the Renderer class is

done using the following three functions.

 compileShader()

 compileVertexShader()

 compileFragmentShader()

The following code implements the process of

linking shaders together into an OpenGL program at

the same time verifying the link status and returning

the program object ID

Fig 5. Flowchart which verifies link status and

returns object ID

Now the vertices need to be defined in the program

with the final connections and Validations. In the

following code drawing to the screen and table takes

place.

float[] tableVerticesWithTriangles = {

// Triangle 1

0f, 0f,

9f, 14f,

0f, 14f,

// Triangle 2

0f, 0f,

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 19|P a g e

9f, 0f,

9f, 14f,

// Line 1

0f, 7f,

9f, 7f,

// Mallets

4.5f, 2f,

4.5f, 12f

};

Fig.6: Intermediate Result

Fig.7: Table including the mallets

VII. SMOOTH SHADING
Smooth Shading Is Done Between Vertices.

OpenGL provides an option to smoothly blend the

colors at each vertex across a line or across the

surface of a triangle. This type of shading can be used

to make the table appear brighter in the middle and

dimmer toward the edges, just to give an effect of a

light hovering over the middle of the table.

Fig.8: Smooth shading

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 20|P a g e

VIII. INTRODUCING TRIANGLE FANS

Fig.9: Triangle Fans

This involves the following steps:

 Color is added to each vertex taking into

account interpolation and gradients.

 We add a new attribute to the vertex data

and vertex shaderand OpenGL reads this

data by using a stride.

 Interpolate this data across the surface of a

triangle.

We need to adjust the coordinate space so that it

takes the screen shape into account, and one way to

do this is to keep the smaller range fixed to [-1, 1]

and adjust the larger range in proportion to the screen

dimensions.

Fig.10: Adjusting the screen’s aspect ratio

IX. ENTERING THE THIRD DIMENSION
The following are the two most vital components:

 OpenGL’s perspective division and the

components to create the illusion of 3D on a

2D screen.

 Setting up a perspective projection so that

we can see the table in 3D.

Homogenous coordinates are used because of the

perspective division and coordinates in clip space are

often referred to as homogenous coordinates.

(1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4), (5, 5,

5, 5)

Fig 12. Transformation steps and different co-

ordinate spaces

Fig 11. Air Hockey table with

filtered texture

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 21|P a g e

Fig 13. The first look 3D view of the table

X. ADDING TOUCH FEEDBACK AND

INTERACTION

finalAirHockeyRendererairHockeyRenderer = new

AirHockeyRenderer(this);

if(supportsEs2) {

// ...

glSurfaceView.setResnderer(airHockeyRenderer);

In Android, we can listen in on a view’s touch events

by calling setOnTouchListener().When a user

touches that view, we’ll receive a call to

onTouch().There is also a need to extend a Two-

Dimensional Point into a Three-Dimensional Line

XI. ADDING COLLISION DETECTION

This involves keeping the player’s mallet within

bounds and also adding velocity and direction to the

mallet. Now we can add some code to smack the

puck with the mallet. To get an idea of how the puck

should react, information is needed about the speed

of the mallet and the direction on which it is moving.

The puck doesn’t slow down because it still has a

uniform velocity.That doesn’t look realistic, so

friction needs to be added to the code to slow the

puck over time. The following lines of code deal with

this problem.

puckVector = puckVector.scale(0.99f);

puckVector = puckVector.scale(0.9f);

XII. FUTURE SCOPE
 Some basic extensions to the above

implementation could bea bowling game where a ball

gets flung by the player and you watch that ball head

down the lane to knock out the pins at the far side.

Touch interaction is what really sets mobile games

apart once the technology is in place, and there are

many ways to be imaginative.Usage of Physics

Libraries can make the tasks a little more seamless

and basic sounds can be included using OpenSL.

Artificial Intelligence can also be implemented to

make the game more interactive with the user. A

menu can be included to provide the user with more

options.

ACKNOWLEDGEMENT
This research paper is made possible through

the help and support of many people both inside and

outside the domain of Engineering and Science.

Especially, please allow me to dedicate my

acknowledgment of gratitude towards our college

Librarian Mr.Pradip Das and his team. I would also

like to thank Mr.AnandGawadekar of the NMIMS

IEEE Committee due to which we could get all

requested references seamlessly without any trouble

and on time.

Fig 14. The final layout of the NDK

Concept game

Sabyasachi Patra et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.16-22

 www.ijera.com 22|P a g e

A sincere thanks to our college and Computer Science

department H.O.D. Professor Dhirendra Mishra for

allowing us to enter the invaluable field of research in

our so important final year of B.Tech. Our mentor,

Mr.AbhayKolhe also guided us on a weekly basis at

periodic meets with him. Finally, we would like to

thank our parents who always encouraged us to do as

much research we could do in our capacity in the final

year and extend an outside support whenever and

wherever required.

CONCLUSION
 In this paper we started with the basics

of how an Android OpenGL based Air Hockey

application should be structured and what it is

expected to do. The basics which enable us to grab

and move a mallet around our fingers and bounce the

puck on the table were covered. A research on the

semantics of a game with such features and

technology would enable us to go further ahead

and deeper into the physics and more complicated

mathematics involved.

REFERENCES
Web Resources:

[1] Ed Burnette. Hello, Android: Introducing

Google’s Mobile Development Platform,

Third Edition. The Pragmatic Bookshelf,

Raleigh, NC and Dallas,TX, 2010.

[2] Android NDK group

(http://groups.google.com/group/android-

ndk)

[3] The Android Developer BlogSpot

(http://android-developers.blogspot.com/)

[4] Google Code

(http://code.google.com/hosting/) for lots of

NDK exampleapplications.

[5] Stack Overflow (http://stackoverflow.com/)

Journal papers:

[6] Walter Binder, JarleHulaas and Philippe

Moret “A Quantitative Evaluation of the

Contribution of Native Code to Java

Workloads” Workload Characterization, 2006

IEEE International Symposium pages 201-

209.

[7] M. B. Dillecourt, H. Samet and M.

Tamminen, “A general approach to connected

component labeling for arbitrary image

representations”, Journal of the ACM, vol.

39, no. 2, (1992), pp. 253-280.

[8] Sangchul Lee and Jae WookJeon “Evaluating

Performance of Android Platform Using

Native C for Embedded Systems” Control

Automation and Systems (ICCAS), 2010

International Conference pages 1160 - 1163.

Books:

[9] Ken Arnold, James Gosling, and David

Holmes. The Java Programming

[10] Language. Prentice Hall, Englewood Cliffs,

NJ, 4th, 2005.

[11] Joshua Bloch. Effective Java. Addison-

Wesley, Reading, MA, 2008.

[12] Ed Burnette. Hello, Android: Introducing

Google’s Mobile Development

[13] Platform, Third Edition. The Pragmatic

Bookshelf, Raleigh, NC and Dallas, Bruce

Eckel. Thinking in Java. Prentice Hall,

Englewood Cliffs, NJ, Fourth, 2006.Mario

Zechner. Beginning Android Games. Apress,

New York City, NY, 2012.

http://stackoverflow.com/

